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Abstract
Plant cells exhibit as much electrical activity as animal cells but the nature of these 
electrical variations remains poorly understood, particularly at the organism level. 
Transitions from darkness to light, mechanical shocks, temperature shocks, pathogen 
attacks, and physical damage to plants have been shown to elicit changes in plant 
electrical patterns at the organism level under laboratory conditions, however plant 
electrical behavior in natural environments remains comparatively understudied. Here, we 
demonstrate that simple extracellular voltage measurements across various wild plant 
species can identify associations between specific environmental conditions and patterns 
of electrical variation, ranging from seconds to hours, in plants exposed to these 
conditions.This work has potential applications in utlizing plants as environmental sensors.
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Introduction
Electrical signals in plants have been under investigation since their discovery in the 19th 
century. The study of plant electrophysiology has advanced in recent decades due to the 
application of biomolecular and machine learning techniques. Research has shifted from a 
focus on establishing the conditions for and the consequences of a specific plant electrical 
signal type that closely resembles the spiking of animal neurons [Trebacz 1998; Koselski 
2008; Opritov 2005; Pikulenko 2005; Sukhov 2009/2011] and has taken a broader view by 
aiming to understand the full variety of fast and slow-onset plant electrical signal patterns 
[Mudrilov 2021; de Toledo 2019] in the context of other known signalling mechanisms 
[Szechyńska-Hebda 2017; Huber 2019; Yudina 2023], such as molecular transport, volatile 
organic compound diffusion, mechanical substrate wave [Mancuso 1999; Tran 2019] and 
acoustic wave propagation [Khait 2018] as well as electrical plant-to-plant signalling 
[Szechyńska-Hebda 2022]. In this study we aim to answer the question if plant internal 
state changes in reaction to specific environmental conditions can be identified and 
characterized by extracellular voltage measurements on plant stems. 

Materials and Methods
Six plant species and one control were recorded over periods ranging from 18 to 36 weeks 
(Table M1), three angiosperm species (Birch, Olive, Magnolia) and three gymnosperm 
species (Spruce, Larch, Yew) were chosen for this study. In addition environmental 
temperature, relative humidity and air pressure were recorded at each plant's location. 

1 - Plant species: 
Spruce (Picea abies), wild, 10-15 years old, gymnosperm
Larch (Larix decidua), wild, 5-10 years old, gymnosperm
Yew (Taxus baccata), potted outdoor, 3-5 years old, gymnosperm
Birch (Betula pendula), wild, 5-10 years old, angiosperm
Olive (Olea europea), potted outdoor, 5-10 years old, angiosperm
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Magnolia (Magnolia soulangeana), potted outdoor, 2-5 years old, angiosperm

2 - Location and climatic conditions:
All plants were located in the austrian Alps at altitudes between 800 and 1000 meters, 
within an area of approximately one square Kilometer. The wild plants at 1000 m altitude 
on a sunny, southward-facing side of a valley in the Lungau region, the potted plants at an 
altitude of 800 m. A brief description of the climatic conditions (values are averages): 
Hottest month July (18 C), coldest month January (-1 C), wettest month September 
(137mm), driest month January (39mm), annual precipitation 1012mm, average relative 
humidity 76%, average pressure 1017 mbar. See also Figure 1 and Figure 2.

3 - Voltage measurement equipment and recording setup:
The electrophysiological recording equipment consisted of one stainless steel needle 
electrode (E1) horizontally inserted into each plant's stem at the height of the canopy, 
between approximately 40 cm and 2 m above ground depending on plant size, a second 
identical electrode (E2) inserted into a branch at the same height as the first electrode as 
well as a third reference electrode (E0) either inserted into the lower portion of the plant 
stem just above the ground or directly into the ground substrate. The two highest placed 
electrodes on each plant (E1,E2) were connected to the inputs of a high impedance, two-
channel DC voltage amplifier (gain: 2-3) while the third electrode (E0) was connected to 
the amplifier's reference input. This way the voltage difference between each stem/branch 
electrode and the reference electrode was measured for every plant continuously over a 
period ranging from 18 to 36 weeks depending on the plant (Table M1). In addition a 
control system was created and measured for a period of 10 consecutive weeks. It 
consisted of a dead branch 2 cm in diameter and 50 cm in length that had been cut from a 
Pavlovnia imperialis tree and left on a heap of wood cuttings for two years to ensure that 
no significant amount of live plant cells would be present at the time of the experiment. 
Immediately before the start of the control recordings this dead branch was inserted into a 
pot with gardening soil and connected to the electrodes E1 and E0.

4 - Data acquisition and pre-processing:

4.1 - Environmental data
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Every plant/control recording location was equipped with a battery-powered environmental 
recorder separate from the battery-powered electrophysiology recorder to avoid electrical 
crosstalk. Using a sensor (BME680  Siemens) connected to a microcontroller (STM32) this 
device measured air temperature (Celsius), relative humidity (%) and air pressure (mbar) 
and stored the respective values on a microSD card once every 31 seconds.

4.2 - Plant and control electrophysiology data
On all plants and on the control system voltages were recorded from electrodes E1 and E2 
at a sampling rate of 400 samples per second (sps). Timestamped voltage values in the 
range between -500 mV (millivolt) and +1000 mV were written to a microSD card by each 
recording device. Individual recording sessions lasted between 4 and 7 days with gaps of 
no more than 30 minutes between sessions in most cases. All recording devices were 
battery powered to enable field operation independent of the power grid and to reduce 
electrical noise to a minimum. To facilitate analysis all recorded voltage data was 
subsequently resampled to a final rate of 0.25 sps corresponding to one sample every four 
seconds.

5 - Data processing:

5.1 - Processing environmental data

The raw environmental data timeseries for each plant/control had three dimensions 
(Temperature, Humidity, Pressure) and one datapoint every 31 seconds. The 20%, 40%, 
60%, 80% quantiles for each dimension were calculated using the entire length of the 
timeseries and were used for discretizing each dimension into five equally sized bins 
labeled 'verylow', 'low', 'mid', 'midhi' and 'hi' for humidity and similarly for the other two 
dimensions.  (Figure 3) 
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Each dimension was then aggregated into hourly intervals. The mean of all Temperature/ 
Humidity/ Pressure values within a given hourly interval was calculated and substituted by 
its respective bin label. In addition, the difference between the first and the last 
temperature/humidity/pressure value within a given hourly interval was calculated and 
substituted by its respective bin label, where the bins were calculated from the distribution 
of hourly differences (Figure 4 and Figure 5). These bins labeled 'down2', 'down1', 'no', 
'up1', 'up2' indicated the speed of change for each of the three dimensions temperature/ 
humidity/ pressure in a given hour.  

This discretization process produced an hourly environmental data timeseries of six 
dimensions that only contained the labels defined above. The final dimension names were 
defined as:  Temperature level (TempL), temperature change (TempC), humidity level 
(HumL), humidity change (HumC), pressure level (PresL), pressure change (PresC).  

E :=( y i
(TempL) , y i

(TempC ) , yi
(HumL ), y i

(HumC ) , y i
(PresL) , y i

(PresC )
)(i=0. ..N)

5.2 - Processing plant and control electrophysiology data

For a given plant/control the E1 electrode voltage timeseries X :=xi=0... N  spanning the 
entire recording period was processed as follows. A constant c>0 was added to X to make 
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all values positive. The resulting series was then normalized by componentwise logarithm 
and subtraction of the first component's log to:

log(X)−log (x0)

Next, a stepwise discrete fourier-transfom (DFT) without overlaps was calculated on the 
normalized X using a window length of 512 samples (~ 34 minutes of data). Windows 
extending over the border of a recording session were discarded. For each window the 
DFT result vector of 512 complex values was first transformed to real values by using the 
complex Modulus, then the second half as well as the first value of each result vector were 
discarded, leaving a vector of length 255. Furthermore the logarithm was applied again to 
every vector component and by combining the output vectors of all windows, the data 
processing resulted in a multivariate timeseries of 255 dimensions with hourly timestamps 
for each plant/control where each dimension corresponded to a frequency bin of 
bandwidth 0.0005 Herz (Hz) in the frequency range between 0.5 milliherz (mHz) and 125 
mHz. (Figure 8a-c, Figure 9a-c, Figure 10a-c)
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Blind source separation was then performed on the multivariate timeseries for every 
plant/control by applying Independent Component Analysis (R Version 4.2.2 statistical 
software; Package fastICA Version 1.2-5.1). The ICA method is predominantly used in 
neuroscience to separate multichannel electrical recordings into a smaller number of 
independent and maximally non-gaussian components for the purpose of dimensionality 
reduction. To determine a suitable number of target components heuristics were used to 
assess the featurespaces resulting from ICA decompositions for several values between 3 
and 127 and the number of target components to use was fixed to 17. This resulted in a 
dimensionality-reduced representation of every plant/control by an hourly timeseries of 17 
dimensions.

P:=(x i
(P1) , x i

(P2 ), ... , x i
(P17)

)(i=0..N )

6 - Analysis:  Finding associations between environmental and plant electrophysiology 
data

For a given plant, the previous dataprocessing steps led to a multidimensional timeseries 
that characterized a plant's state on an hourly basis through a numerical vector of length 
17 (5.2). Likewise the environmental conditions the plant was finding itself in during the 
recording period were characterized by a six-dimensional timeseries of labels (5.1). To find 
associations between environment and plant/control we proceeded with fitting generalized 
linear models (R function glm) to the timeseries data. 

E∼GLM (P)

We used all the dimensions of the plant/control timeseries as independent variables and 
chose the dependent variable from the dimensions of the environmental timeseries. This 
approach may seem counter-intuitive, since we aim to predict environmental variables with 
plant variables. However, because of the richness of the plant latent space in comparison 
to the environmental latent space our chances of discovering meaningful associations 
between the two is greater if the analysis is conducted this way. If a strong association 
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between a plant electrical pattern and a specific environmental condition existed it would 
be possible to find a well-fitting model with better-than-random predictive performance. 

6.1 - Motivation for using forward-looking analysis:

When compared to animals, most plants' reactions to environmental changes are slow and 
can take minutes or hours to manifest. In order to increase the chances of discovering 
delayed or slow-onset plant electrical reactions, our analysis of plant data took a forward-
looking approach. When searching for assocations with a given environmental condition 
prevalent at time t 0 we looked at plant data at time t 0  but also included plant data for 
times t 0< t1<t 2< t3<t 4 .  Under the assumption that a plant may react to environmental 
change with an unknown delay, we would then be able to identify an association, if one 
existed. 

6.2 - Use of symbolic variable-value terms for describing subsets of environmental 
conditions:

After binning (5.1) each of the six environmental dimensions had a range of five possible 
values. We chose to use simple (size 1) and complex (size 2) variable-value pairs to 
further subset the environmental conditions encountered during the experiment. 

Examples of simple (size 1) variable-value terms (left) and their definition (right):
 TempL.high :⇔ y(TempL)

=high
 TempC.down2 :⇔ y(TempC )

=down2
 HumL.mid :⇔ y(HumL)

=mid
 PresC.up1 :⇔ y(PresC)

=up1

Examples of complex (size 2) variable-value terms and their definitions:
 TempL.high  and  HumC.down1 :⇔( y(TempL)=high )∧( y(HumC )

=down1)
 PresC.up1  and  TempC.up1 :⇔( y( presC)

=up1)∧( y(TempC )
=up1)

6.3 - Fitting gl-models to discover associations between environmental and plant variables

Examples of possible associations described by simple left-hand-side (LHS) terms of size 
1 are:

y t0
(TempL)

=high⇔GLM (x t 0
(P1) ,... , x t0

(P17 ), x(t 0+1)
( P1) ,... , x(t0+1)

(P17 ) ,... , x( t0+4 )
(P1 ) , ... , x(t 0+4)

(P17)
)=1

y t0
(HumC )

=down 1⇔GLM ( ...)=1

y t0
( PresL)

=mid⇔GLM (...)=1

An example of an association described with a complex LHS term of size 2 is:

( y t0
(TempL)

=high)∧( y t0
(PresC)

=down2)⇔GLM (...)=1

By our definition the dependent variable in these two types of terms was binary and 
consequently all fitted gl-models were binary classifiers. We tested all possible terms of 
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size 1 (30 terms) and size 2 (375 terms) against all plants and control. Terms of size 3  or 
higher were not tested since the number of datapoints for each such term was too small to 
give significant results. For every term and plant/control combination we used out-of-
sample k-fold validation (2<= k <= 5) to calculate a ROC/AUC value for the fitted gl-model. 
Briefly, the AUC (Area Under the Curve) measures the predictive performance of a binary 
classifier. AUC values fall between 0 and 1. A value of 0.50 or less indicates that the model 
performs no better than random and a value of 1.0 means that the models' predictions are 
perfect. Values above 0.60 indicate acceptable, non-random predictive performance. 

6.4 - Selection of environmental subset terms most likely to reflect an association between 
plant and environment

If a specific environmental condition can be predicted by measuring voltage variations in a 
dead piece of wood exposed to these conditions, then finding that a live plant's voltage 
variations can also predict the same enironmental condition is not a strong argument in 
favor of the plant voltages posessing unique predictive qualities when compared to an 
abiotic control system. On the other hand if an environmental condition cannot be 
predicted from a dead piece of wood (abiotic control system) but can be predicted from a 
live plant, this would support that the plant's voltage variations do posess unique qualities 
associated with that environmental condition. We formalize this logic by defining three 
criteria that need to be met for any given (environmental condition) term in order to include 
it into the final selection of terms likely to be associated with plant electrical variation 
patterns. Criterion1: The AUC value for the term in the control experiment has to be less 
than 0.55 (Control predictive quality is random). Criterion2: The number of test cases in 
the control experiment has to be at least 50 (significance). Criterion3: The AUC for the 
plant experiments have to be greater than 0.65 (plant predictive quality is better than 
control predictive quality). Applying these criteria then led to the selection of the 
(environmental condition) terms in Table T1. Of special interest are those that have AUC 
values well above 0.65, have a small confidence interval radius and are present in the 
term selection for three or more of the six plants observed in this study. These terms have 
been separately listed in Table T2 and are visualized in Figure 6 (shaded areas). 

Results

An association between high temperature (>18 C) and a recognizable plant electrical  
pattern ocurring during the four hours following the onset of high temperatures was found 
(Figure 6, red shaded area). In addition an association between mid-level humidity (67-78 
%) slowly increasing at a rate of 1.0-3.0 %/h and a recognizable plant electrical signalling 
pattern was found (Figure6, blue shaded area). Furthermore an association between low 
temperature (6-11 C) paired with low humidity(50-67 %) and a recognizable plant electrical 
signalling pattern was found (Figure6, orange shaded area).These associations were 
discovered in at least three different plants (Table T2).
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For the six plants included in this study we found that our methodolygy was able to identify 
between three and eight high strength associations for each plant (Table T1) with the 
exception of the yew for which no associations were found. For spruce we identified eight 
associations, for larch six associations, for birch we identified three, for olive four and for 
magnolia also four associations (Figure 7a - 7e). 
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Discussion
Our results establish a link between specific environmental conditions and time-delayed 
plant electrical patterns. We have used the expression 'association' to describe this link. 
We found three narrowly defined environmental conditions (Table T2) that elicit a 
characteristic electrical response in at least half of all the plants included in this study, 
suggesting that they might be detectable in the majority of angiosperm and gymnosperm 
species. Furthermore we have found environmental conditions that only some species 
repond to (Table T1).

Given that plants are known to react to and adapt to a variety of external stimuli a causal 
effect of the environment on the tested plants is the most likely explanation for the 
observed associations.

One of the strongest associations linked the onset of high temperature (> 18 C) to a 
subsequent electrical pattern. Research conducted by [Gilbert 2006] showed that the 
absolute diel plant electrical potential variation is strongly correlated to sapflux. 
Furthermore it is well established that sapflux is driven predominantly by the atmosphere-
to-plant water vapor pressure deficit (VPD) [Wan 2023] which in turn is almost completely 
determined by air temperature and modulated by relative humidity [Grossiord 2020]. 
Therefore the association we found between high temperature and plant electrical 
variation is consistent with current research on sapflux and VPD dynamics and a purely 
thermoelectrical effect can be excluded due to the behavior of our control system which 
showed no association between high temperature and electrical pattern changes.

The yew was the only plant for which no significant association was found. Possible 
explanations are a fault in the plant data acquisition system or weak contacts between 
plant tissue and stem electrodes.

Our methodology used extracellular voltage measurements on plants in combination with 
data analysis techniques derived from neuroscience to non-destructively identify and 
characterize plant reactions and plant internal states. For future studies, substituting the 
general linear models with neural network models will likely improve the identification and 
characterization of environmental conditions and other external factors that impact a plant. 
We believe that our findings are a useful addition to the methods and tools available in 
plant biology in general and plant electrophysiology in particular since they enable 
researchers to use plant electrical reactions in near realtime for the characterization of 
otherwise difficult to observe plant state changes in response to external stimuli.
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Tables:

Table M1 - Plant species and recording periods

Table  T1 -  Environmental conditions to which at least one plant reacted
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Table T2 - Environmental conditions to which at least three plants reacted
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